Read Anywhere and on Any Device!

Subscribe to Read | $0.00

Join today and start reading your favorite books for Free!

Read Anywhere and on Any Device!

  • Download on iOS
  • Download on Android
  • Download on iOS

Behavior Learning with Constructive Neural Networks in Mobile Robotics: Robot Behavior Learning: Algorithms and Experiments

Behavior Learning with Constructive Neural Networks in Mobile Robotics: Robot Behavior Learning: Algorithms and Experiments

Jun Li
0/5 ( ratings)
In behavior-based robotics, a robot achieves a required task by using various behaviors as the building blocks for that overall task. A robot behavior in turn is a sequence of sensory states and their corresponding motor actions, and extends in time and space. Making a robot able to learn meaningful and purposeful behaviors from its own experiences has played one of the most important roles in intelligent robotics, and have been called the hallmark of intelligence. This book presents a learning system for acquiring robot behaviors by mapping sensor information directly to motor actions. It addresses the integration of three learning paradigms, namely unsupervised learning, supervised learning, and reinforcement learning. The approach is characterized by the use of constructive artificial neural networks, Several novel techniques for robot learning using constructive radial basis function networks are introduced. The learning system is verified by a number of experiments involving a real robot learning different behaviors. It is shown that the learning system is useful as a generic learning component for acquiring diverse behaviors in mobile robots.
Language
English
Pages
156
Format
Paperback
Release
July 13, 2010
ISBN 13
9783838380063

Behavior Learning with Constructive Neural Networks in Mobile Robotics: Robot Behavior Learning: Algorithms and Experiments

Jun Li
0/5 ( ratings)
In behavior-based robotics, a robot achieves a required task by using various behaviors as the building blocks for that overall task. A robot behavior in turn is a sequence of sensory states and their corresponding motor actions, and extends in time and space. Making a robot able to learn meaningful and purposeful behaviors from its own experiences has played one of the most important roles in intelligent robotics, and have been called the hallmark of intelligence. This book presents a learning system for acquiring robot behaviors by mapping sensor information directly to motor actions. It addresses the integration of three learning paradigms, namely unsupervised learning, supervised learning, and reinforcement learning. The approach is characterized by the use of constructive artificial neural networks, Several novel techniques for robot learning using constructive radial basis function networks are introduced. The learning system is verified by a number of experiments involving a real robot learning different behaviors. It is shown that the learning system is useful as a generic learning component for acquiring diverse behaviors in mobile robots.
Language
English
Pages
156
Format
Paperback
Release
July 13, 2010
ISBN 13
9783838380063

More books from Jun Li

Rate this book!

Write a review?

loader